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Abstract

We investigate the performance of simulated annealing and tabu search, two new general
problem solving heuristics, on an examination timetabling problem. These two techniques
are described here and issues arising from applying them to examination timetabling are
discussed. The problem we use as a test case is one that appears in Fang (1992) in which
genetic algorithms were used to produce approximate solutions and experimental results
were presented showing the performance of genetic algorithms on this problem. Finally, we
compare tabu search, simulated annealing and genetic algorithms on the basis of
experimental results and draw some conclusions.

Introduction

Timetabling examinations is an activity that takes place regularly in almost all universities and
educational institutions. Ever since the advent of digital computers, the possibility of applying them to
timetabling has been researched---the idea of reducing the time and manpower required to construct
timetables being an attractive prospect. For an overview of this research see for example Schmidt and
Stréhlein (1979) which gives an annotated bibliography of work on timetabling that appeared before
1980, de Werra (198 5) and Carter (1986) which deals more specifically with examination timetabling.

In order to construct timetables that will be convenient for both students and teachers, sophisticated

. scheduling algorithms are needed. The timetabling problem however, like many other scheduling
problems, usually takes the form of a hard combinatorial optimization problem and no fast exact
algorithms exist for solving it, making it necessary to resort to heuristic methods. The types of
constraints on the timetable that should be incorporated can differ greatly from one institution to the next
and most algorithms are designed for either simple general exam timetable models or for very specific
types of constraints and models. Few algorithms can be applied to a broad range of problems and new
algorithms and heuristics have to be developed if the problem changes (de Werra 1985).

Over the last few years, three stochastic techniques have been applied to combinatorial optimization and
other problems with some success: genetic algorithms (GAs), simulated annealing (SA) and tabu search
(TS). These methods are designed to be robust general problem solving algorithms, that is, they perform
well over a wide range of problems due to the fact that they make use of very little problem specific
heuristics or information. All three techniques proceed by generating possible solutions from a solution
space, trying to find a solution that minimizes (or maximizes in some cases) an objective function
defined over the solution space. Usually the objective function takes the form of a penalty or cost function
that indicates, for each solution in the solution space, the penalty associated with it. In cases were the
solution space is too large to find an optimal solution by evaluating the objective function for all
solutions, even when controlled backtracking and advanced tree pruning techniques are used, these
stochastic methods can find near optimal solutions quickly by evaluating only a very small fraction of the
total number of possible sohutionts. They can also be used to find good approximate solutions to many
optimization problems provided that we can dssociate a cost ot penalty with each solution in the search
- space, and therefore these methods can be used on a very wide range of problems.
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The Edinburgh Problem

Fang (1992) describes an examination timetabling problem encountered at the university of Edinburgh.
He also goes on to investigate the performance of several genetic algorithms using different parameters
and genetic operators on this problem. We won't discuss genetic algorithms in detail here. Instead we
will compare tabu search and simulated annealing with the results Fang obtained with genetic algorithms
for the Edinburgh problem.

The timetabling problem in Fang (1992) is specified as an optimization problem and is therefore highly
suitable to the GA, TS and SA approaches. A number of exams have to be scheduled in a number of
days, where each day is divided into 4 sessions — 2 sessions each half day before and after lunch. A
timetable in N days is an assignment of sessions numbered N to 4N to the set of exams numbered 1 to K,
for K exams that have to be scheduled. For each i,0 <i <N-1, the sessions 4i+1 and 4i+2 are the first
two exam sessions of day (i+1) and constitutes the first half day, while sessions 4i+3 and 4i+4 are the
next 2 sessions of the (i+1)'th day and are in the second half day. The constraints which must be taken
into account by the scheduling algorithm are described by Fang as:

STRONG CONSTRAINTS: ]

[1] The same student cannot take two different exams at the same time. In other words, the exams
cannot clash for any student. (30)

[2] Very strongly prefer no more than 2 exams per day for a given student. (10)

WEAK CONSTRAINTS:
[3] Strongly prefer not to have exams consecutive on the same half day for the same student. (3)
[4] Prefer not to have exams consecutive on different half days of the same day for the same student. (1)

In order to model these constraints as an optimization problem, a penalty is given to each instance of a
violation of a constraint in a timetable being evaluated. Given a timetable, its cost is calculated as
follows: For each occurrence of a violation of one of the constraints above, the number in brackets next to
it is added to the total cost of that timetable. To do this a list of courses taken by each student is examined
" and is used to check which constraints have been violated for each course combination taken.

Fang (1992) then compares the performance of several GAs, having different parameter settings and
operators, with the timetable generated manually by human experts. Each GA is run 10 times to generate
10 different timetables. The GA that performed the best produced a six day timetable with cost 45 as the
best of 10 nuns, compared to the timetable generated manually by a human expert which had a cost of
101 in spite of using seven days. In addition, the 10 runs of the GA takes about 20--30 minutes while the
human expert usually takes about an hour to construct a first draft timetable followed by consultation
with the students to evaluate the timetable, and then modifications are made to the first draft.

According to Fang (1992), the GA method is clearly superior to the manual method since it is faster and
constructs better timetables. The question we address next is how tabu search and simulated annealing
compares with the genetic algorithm approach for this specific timetabling problem. We start by
describing simulated annealing and tabu search and how we applied it to this exam timetabling problem.

Tabu Search and Simulated Annealing

Both TS and SA are based on an operations research technique known as local optimization that is often
used to solve combinatorial optimization problems (Eiselt and Laporte, 1987). In order to use any of
these techniques to find an approximate solution to some instance of a minimization problem, we need to
define the set X of feasible solutions and the objective function ¢ : X — N that we are trying to

minimize. That is, we are trying to find a solution S,,,, Which (S is as close to the minimum of ¢
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over X as we can find with the heuristic method in limited time. In addition, we need to define a
neighbourhood structure for the set of feasible solutions. We do this by defining the function

N: X — 2% such that for each S € X, N(S) C X is the set of solutions defined to be adjacent to S,

also called the neighbourhood of S. Note that we are in effect defining a directed neighbourhood graph G
= (X,F) where the set of wvertices is the set of solutions X and the set of edges

E={(5.8") |S € X nSeN(S)}.

A local optimization algorithm starts with some initial solution S = S, ,, S,,, € X and searches M(S)
for a solution S' € N(S§), such that c(S') < c(S). Then it assigns S =" and repeats the process,
terminating when a solution S, € X is reached for which ¢(S,,.) <c(S'), VS'e€ N(S,,.).Sucha

solution is known as a local minimum. The fact N(S,,.)does not contain a better solution does not

loc

imply that S, . is a global minimum — a solution for which ¢ is minimized over the entire solution
space X.

Both TS and SA also move through the neighbourhood graph defined on the search space X by moving
from one solution to a next along the edges of the neighbourhood graph, keeping track of the best
solution encountered up to that point in an attempt to find a solution with low cost. They differ, however,
in the method used to select the next solution from the neighbourhood of the current one. They also diffier
from local optimization because they do not get trapped in local minima and do not have to terminate
when a local minimum is reached.

Simulated Annealing

Simulated annealing is a process that lias its roots in statistical mechanics (see Davis, 1987b). It was first
proposed as a possible technique for finding near global minimum solutions to large scale optimization
problems by Kirkpatrick, Gelatt and Vecchi (1983). Since then SA has been successfully applied to a
number of such problems, for example the travelling salesman problem (Kirkpatrick, Gelatt and Vecchi,
1983) and graph colouring (Chams, Hertz and de Werra 1987 and Johnson, Aragon, McGeoch and
Schevon, (1991).

SA is based on local optimization with one important difference: When the current solution is S and a
solution §' € N(.S)is randomly selected with ¢(S") < ¢(.5) that solution is immediately accepted and

made the current solution. If, however, a solution S'€ N(S) is generated with ¢(S') > ¢(S), it has a

probability e “77*YT o being accepted. Each selection of a solution from N(.S)is called a trial,

irrespective of whether that solution is accepted. T in the above expression is a variable of the algorithm
known as the temperature. The temperature (a term that comes from the statistical mechanics analogy) is
initialized to some large value at the start of the SA process and is decreased gradually as the search
progresses. This will make it increasingly less likely that solutions with higher costs than that of the
current one will be accepted. It is known that, in theory, under certain conditions and when the
temperature is decreased sufficiently slowly, the SA process will eventually find a global minimum for
many clasges of problems (see Faigle and Kern, 1991). However little is known about how to implement
the SA process to find good, near optimal solutions to practical problems quickly (see Johnson, Aragon,
McGeoch and Schevon, 1991).

To apply the general SA algorithm to any problem, the following parameters have to be specified: The
initial temperature T, ., together with the temperature factor @ E(O,l) by which the temperature is

init »
"multiplied every rep trials to simulate the gradual lowering of the temperature. We also have to specify
the terminating condition for the search. These issues will be discussed at the end of section 3.
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Tabu Search

Tabu Search is another stochastic technique based on local optimization that has had some success with
combinatorial optimization problems, including graph colouring (Hertz and de Werra, 1987)-and also
timetabling (Hertz, 1991 and 1992). It was originally proposed by Glover for a specific application and
was later generalized (see Glover 1986). It seems less popular than SA, however, and little has been
published on the theoretical aspects of TS.

TS operates in a fashion similar to SA and local optimization, traversing the neighbourhood graph by
moving from one solution to the next along the edges of the graph, but differs in how, at each step of this
iterated process, the next solution to visit is selected from the neighbourhood of the current solution. If

the current solution is S, TS generates a random sample of solutions V" < N(S)with size

|V*|= sample_size, where sample _size is a parameter of the TS algorithm. If a solution v, is
found while constructing V", such that ¢(v,) <c(S), then v, is immediately accepted as the new current
solution and the process is repeated. If, however we generate the entire sample consisting of
sample _size solutions without finding a better solution, the candidate in V" with the lowest cost is

accepted. This process allows TS to escape from local minima where traditional local minimization
algorithms would have had to terminate.

In order to prevent TS from cycling indefinitely between a small number of solutions or vertices in the
neighbourhood graph, a structure known as a tabu list is employed. When TS moves from the current
solution .S to a new current solution S', the reverse of the move that transforms .S into S' is added to
the tabu list and that move is said to be tabu. In general, the exact nature of a move in this sense depends
on the application. For assignment problems a move usually consists of changing the value assigned to
one of the variables of the problem. For example if we transform the current solution by only changing
the value assigned to variable v, from ¢, to ¢, then the reverse of this move is taken to be any

transformation that reassigns value ¢, to variable v;. In such a case we normaliy store the pair (i,¢;) in
the tabu list to indicate that assigning c, to variable v, is a tabu move. Whenever a move is made its
reverse is added to the tabu list and moves that are tabu are prohibited from being made under a number
of conditions we will explain next. Moves do not stay tabu forever, instead only the reverses of the last
T size (a parameter of the TS algorithm) moves made are recorded in the tabu list and the tabu status of
older moves are dropped when newer ones are added. The tabu list prevents TS from returning to a
solution it has already visited during the previous T size moves. However, it also makes moves to
solutions not yet visited tabu when we define moves as we have done here. It could happen that a solution
with a cost lower than the best solution found up to tliat point can be reached from the current solution,
but that that solution is tabu. In order to reduce the risk of making solutions tabu that are worth
investigating, Glover (1986) proposed the use of an aspiration function.

The aspiration function 4 initialized as A(c) = ¢,V costs ¢ when TS starts. Whenever we move from a
solution S, with cost ¢;=c(S)) to a solution S, with cost ¢, = ¢(S,) < A(c,), we set A(c,) = c,.The
interpretation of the aspiration function is that when A(x) = y, then the lowest cost of a solution ever

moved to from any solution with cost x is y. Thus whenever we can move from a solution S; to S, and
c(s,) < A(c(S,)), we know that this transition has not been made earlier during the search. With this
in mind, we can safely ignore the tabu status of a imove that improves on the aspiration value of the cost

of the current solution, knowing that this transition Has not been made previously and that this is
consistent with the goat of preventing eyeliitg,
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Applying TS and SA to the Edinburgh problem.

The above two general algorithms, SA and TS, were applied to the Edinburgh AI/CS M.Sc. 91/92 exam
problem as described by Fang. This requires that the exams be scheduled in 6 days subject to the
constraints given in section 2. In order to do this, a neighbourhood structure has to be defined for SA and
TS, terminating conditions defined and values assigned to the parameters of the two algorithms.

The neighbourhood structure

Both SA and TS require that a solution space, neighbourhood structure and cost function for the problem
be specified. The solution space, .X, and cost function, ¢, we take to be equivalent to Fang's (1992)
definition as described in section 2. The solution space is defined to consist of all assignments of the 4N
exam sessions available to the K exams. For this particular problem, K = 44 and N =6. The cost function
we also take to be identical to that of Fang that we described in section 2. This allows us to compare the
costs of solutions found by TS and SA to those found by Fang's GAs.

Unlike the GA approach, SA and TS need a neighbourhood structure imposed on the solution space. We
use the same structure for both SA and TS: For any solution S € X we define N(S) to consist of all

assignments in X that diffier from S by the session assigned to exactly one exam.

Another aspect to consider is the method used in both SA and TS to generate an initial solution. A
number of possibilities are available. One is to use for an initial solution one that. was found by some
other heuristic algorithm (if such an algorithm was available) and the use SA or TS to attempt to
improve on that. We choose the simplest method for generating initial solutions, since it was sufficient
for our purposes:The initial solution was taken to be some randomly generated solution from the solution
space.

The terminating condition

" For both TS and SA we need to define terminating conditions for the search. In order to compare our
approach with that of Fang we need some condition that will ensure that the amount of work done in that
case of SA and TS is approximately equal to that done by the GAs. Ideally we want to restrict running
times to be the same for all 3 methods, but this would depend on the relative speed of the system on
which Fang implemented his GAs. Fortunately there is a good alternative. By far the most
computationally expensive operation for all 3 these techniques is evaluating the cost of a solution by
iterating through the list of students to determine for each student the penalty due to violating the
constraints listed in section 2. Thus to ensure that one run of our implementations of SA and TS does

" approximately the same amount of work as one run of the GA that we are comparing it with, we
terminate the search when 15000 solutions have been evaluated -- the same number that one run of the

GA evaluates. Note that 15000 is a very small fraction of the approximately K* = 2.7 x 10*° solutions
in the search space.

Parameter tuning

Next we address the question of assigning good values to the parameters of the SA and TS algorithms.
Deciding on parameter values is a tricky business. Often the only way to find parameter values is by
using a combination of extensive experimentation, intuition and educated guesswork. This approach was
used to find the optimal parameter settings for SA and TS too. The parameters for TS were the easiest to
“decide on. There are only 2: T_size and sample_size. Glover (1986) noted that the optimum value for
" T size, the size of the tabu list, appears to be approximately 7 and that this seems to be largely problem
independent. We found that smaller values for 7'_size tends to deteriorate the quality of the best solution
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found in 15000 evaluations, while much larger values have very little effect in terms of the quality of
solutions, but that larger tabu lists slow down the search slightly. The best value for sample size was
found through experimenting with a number of different values to be 50. This seems to confirm the
.assertion by Hertz (1992) that a good value for T_size when using TS for a scheduling problem is to take
T size= number of objects to schedule. Remember that in our problem that the number of exams to be
scheduled =K=44. After some experiments with TS seemed to confirm this, we decided that T'_size=7
and sample_size=50 were good parameter settings. (It is interesting to note that Fang (1992) found that
with GAs the best population size was also about 50).

The 3 parameters for SA were slightly more difficult to decide on. The parameters we needed to find
values for are: T,,;, a and rep. The parameters a and rep together determine the rate at which the initial
temperature T,; is reduced. Unlike TS there are no simple general guidelines for determining parameter
settings for SA. After extensive experimentation, good values for these parameters were found to be:

Tinit =2, rep=2000 and a=0.8.

Results

Now we report on the performance of TS and SA. Remember that Fang's (1992) best GA found a
solution with cost =45 in one of 10 runs with each run evaluating 15000 solutions. Also note that we are
restricting SA and TS also to 15000 evaluations and running each algorithm 10 times with the parameter

settings we indicated in the previous section.

Table 1. TS, SA and GA performance on 10 runs.

Method #Evaluations 5000 10000 15000
SA Best 43.0 40.0 31.0
Avg. 49.1 479 46.6
TS Best 37.0 37.0 37.0
Avg. 58.5 56.3 55.1
GA Best - - 45.0

The above table shows for SA and TS the best solution found during 10 runs after 5000, 10000 and
15000 evaluations and also the average cost of the best solution found by each of the ten runs after 5000,
10000, and 15000 evaluations. For Fang's best GA, only the best solution found after 15000 evaluations
is known.

Conclusions

From table 1 we can see that both TS and SA found solutions significantly better than those reported by
Fang. Even after 5000 iterations both SA and TS in one of the 10 runs of each found solutions better than
that reported for the GA after 10 runs of 15000 evaluations. The best run of TS found a solution with cost
37 after only 3947 evaluations without improving it further after that. This might lead one to think that
TS converges to a good solution more quickly than SA, but the gradual decrease in the average best
solution found by each of the 10 runs of TS would seem to refute this when we compare it to the average
values for SA.

Armed with table 1 one might be tempted to conclude that SA is better than TS and that TS is better than
GAs. This would be a hasty assumption. Firstly these results apply to only one very specific problem. It is
entirely possible that with slight changes to the problem the situation might be different. On the other
hand it is reasonable to expect that the greater the similarity a problem has to the one we experimented
with, the more relevant our results will be. There dre also very many variations of GAs and it may be that
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other variations may perform better on this problem. The results reported on here provide no evidence of
this, however.

SA and TS are obviously worth considering for timetabling problems similar to the one we examined.
SA, of course, is good because it produced the best results. But in order for SA to perform well careful
selection of the parameters is necessary. If we make bad choices for the parameters SA will not perform
very well. In addition, the parameter values for SA tend to be rather problem dependent and we might
have to reconsider parameter choices when the problem changes slightly. In contrast to this, TS would be
a good method to use if we do not want to spend time optimizing parameters manually. The two
parameters of TS are largely problem independent and if we choose T _size=7 and sample_size= number
of exams to schedule we are likely to achieve good results.

SA and TS were also applied to the UPE timetabling problem, with similar results. The algorithms
discovered timetables considerably better than the¢ manually generated timetable. While these are only

two specific cases, the fact that such good results were obtained with general problem solving algorithms
should be encouraging to others who wish to apply SA and TS to exam timetabling.
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