Research Articles

A Comparison of Graph Colouring Techniques

E Parkinson

P R Warren

Department of Computer Science, University of Port Elizabeth, P.O. Box 1600, Port Elizabeth, 6000

Abstract

Many scheduling problems can be modelled as graph colouring problems. This paper gives a survey of heuristic algorithms
used to colour graphs by describing a number of such algorithms found in the literature using an uniform notation. We then
compare these algorithms in terms of the time used and the quality of the colourings produced, on the basis of empirical

results.

Keywords: Graph Colouring, Heuristic Algorithms, NP-hard, Random Graphs.

Computing Review Categories: A.1, G.2.2

1 Imntroduction

The graph colouring problem has many practical applica-
tions such as scheduling exams, the storing of parser tables
and the assignment of radio frequencies [15]. Much re-
search has been done to develop efficient exact and heuristic
algorithms to colour graphs. The graph colouring problem
is NP-hard, however and finding an exact solution is not
always practical. Because of the exponential time com-
plexity of all known exact algorithms, heuristic algorithms
are usually used for problems encountered in practice. It
is unknown whether a polynomial time algorithm for this
problem exists. Thus far, however very few experimental
results have been published comparing the large number
of heuristic graph colouring algorithms known. This paper
makes a uniform presentation of these algorithms. Exper-
iments were done to test their performance on generated
random graphs of different sizes. We then compare the al-
gorithms in terms of time used and quality of the colourings
produced on average.

2 Notation

We define a (simple, undirected) graph G = (V, E) as
a set of vertices V together with a set of edges £ =
{{v1,v2} | vi,v2 € V}. Two vertices are said to be ad-
jacent, or neighbours, in G if there is an edge between
those two vertices. The degree of a vertex v in G is de-
noted by d(v) and is defined as the number of vertices in
G adjacent to v. A subgraph H = (U, F) of G is de-
fined as a graph such that U C V and F C E. The
subgraph induced by vertices vy, vy, ..., v, of G we de-
note by ({v1,v2,...,vs}) and it is defined as the graph
G' = (V',E') where V' = {v,v;,...,v,} and E’' =
{{w1, w2} w1, w2 € V' A {w1, w2} € E}. A clique or

14

complete subgraph K of a graph G is a subgraph of G such
that there is an edge between every two vertices in K. A
graph containing n vertices and m edges is said to be of
order n and its density is defined as 2% This is the
ratio between the maximum number of edges an order n
graph can have and the number of edges the graph actually
has

A path of length r between vertices u and w in a graph

6= (V, E) isa sequence of vertices vo— v, — ... — vy, Such

that ¥ = vp and w = v,, and (v;—;,v;) € E: Vi, 1 <i <
r. A graph is connected if there is a path between every two
vertices in the graph. A graph is disconnected if it is not
connected. A subgraph H of G is a connected component,
or a component, of G if it is a maximal connected subgraph
of G, that is, there is no other connected subgraph of G of
which H is a subgraph. A connected graph consists of only
one connected component.

Given a graph G = (V, E) a k-colouring is an as-
signment of the set of colours, C = {1,2,...,k} to the
vertices of G such that no two adjacent vertices are as-
signed the same colour. The chromatic number x(G) of
the graph is defined to be the smallest k for which G has a
k-colouring and any such x(G)-colouring is known as an
optimal colouring,.

3 Exact algorithms

The problem of finding an optimal colouring of an arbitrary

. graph is known to be NP-hard. All known algorithms for

this problem are therefore exponential time algorithms and
can only be applied to small graphs without computation-
ally heavy cost. Christofides[3], Brown [2] and Brelaz (1]
describe three such algorithms and Peemoller [14] points
out and corrects an error in Brelaz’s algorithm. Kubale
and Jackowski [11] compare the efficiency of these algo-

SACJ/SART, No 14, 1995

rithms on the basis of empirical experiments. They restrict
themselves to graphs of order 60 and less and for the 60
vertex graphs fail to find optimal colourings except for the
sparse and very dense graphs, which are easier to colour
than graphs of medium density.

4 Heuristic algorithms

Because it is not always practical to find optimal colourings,
many researchers have focused on developing heuristic al-
gorithms that find near optimal colourings of graphs. For
practical applications near optimal solutions for optimiza-
tion problems are usually sufficient when the computational
complexity of the problem is such that an exact solution is
infeasible. Unfortunately, there are also theoretical lim-
its on how closely we can approximate optimal solutions
for graph colouring. Garey and Johnson [5] showed that
constructing colourings using fewer than r - x(G) colours,
with » < 2, is also NP-hard in the sense of [6]. The best
guarantee at present is that we can colour any order n graph
in polynomial time, using at most O(M x(G))
colours [7]. This means that at present no l%nown polyno-
mial time algorithm will produce, for all graphs, a colour-
ing using less than some constant multiple of x(G) colours,
for any constant. Fortunately, NP-bardness is a worst case
measure and on average heuristic algorithms can produce
colourings much better than those given by the worst case
limits. We will now describe these algorithms and compare
them empirically.

Sequential algorithm

This is perhaps the most intuitive of heuristic algorithms.
It is also known as the greedy algorithm because it colours
the vertices of a graph in sequence in a greedy fashion.

1 Order the vertices of the input graph in some sequence,
V1,02, ...y Un.

2 Colour v, with colour 1.

3 For all 1,1 < 1 < n, if vertices v;, v, ..., v;—; have
been coloured, colour v; with the smallest colour
¢ (a positive integer) not assigned to any vertex
v, vy, ..., vi—] that is adjacent to v;.

Many refinements of this algorithm have been proposed to
reduce the number of colours used. These all order the
vertices, in step 1 of the above algorithm, according to
some heuristic, instead of starting with a random sequence
of vertices, in an attempt to force this colouring algorithm
to first colour vertices that might prove difficult to colour
later on.

Largest first ordering

This vertex ordering was suggested in[16). It orders the
vertices of the graph in decreasing order of degrees. The
initial ordering of the vertices, before the sequential algo-
rithm is applied, is such that d(v;) < d(v2) < ... < d(v,).
The resulting algorithm is known as the largest first algo-
rithm,

SACJ/SART, No 14, 1995

Research Articles

Smallest last ordering

This vertex ordering which can be used with the sequential
algorithm was first described in [13]. It orders the vertices
of the input graph G = (V, E), in order v}, v3, ..., v, such
that v, is a vertex of minimum degree in G and for each
i,1 < i < n, v; is a vertex of minimum degree in the
subgraph ({vi, v, ..., v;}).

Dynamic largest first ordering

This is a version of the largest first ordering that orders
vertices according to the number of neighbours it has in
the uncoloured subgraph remaining at each stage and was
suggested in [4]. The vertices are ordered v}, v2, ..., vy, such
that each v; is a vertex of maximum degree in the subgraph

. ({vl'y Vigly oy vn}).

Largest first with tie-breaking

This is a refinement of the largest first ordering and was
first described in [4]. In the largest first ordering, when two
vertices have the same degree, ties were broken, implicitly,
by selecting randomly between the vertices of equal degree
the order in which they will appear in the ordering. The
largest first with tie-breaking ordering, when encountering
vertices of equal degree, considers the sum of the degrees
of all vertices adjacent to the given vertex and breaks ties
by placing vertices with a higher sum before vertices with
lower such sums.

Dsatur Algorithm
The Dsatur algorithm, due to[1], differs slightly from a
sequential algorithm in that an initial ordering is not con-
structed before colouring starts, but instead the order in
which the vertices are coloured is decided dynamically as
the vertices are being coloured.

Brelaz defines the colour degree of a vertex in a par-
tially coloured graph as the number of different colours

" used to colour adjacent vertices. This concept is used in

the Dsatur algorithm below.

1 Colour a vertex of largest degree with colour 1.

2 Select a vertex v of maximum colour degree. If there
is a tie, choose between these vertices by selecting any
vertex of largest degree in the subgraph induced by the
uncoloured vertices.

3 Colour the vertex v with the smallest colour not as-
signed to any vertex adjacent to v.

4 Stop if all vertices are coloured, else go to step 2.

The interchange techniques

All the algorithms described so far have in common that
they colour each vertex, as itis encountered, with the small-
est possible colour. Once a colour is assigned to a vertex
that colour is not changed, regardless of whether that as-
signment later causes problems.

As a way of improving the performance of his smallest
last algorithm, Matula [13] suggested trying interchanges
on colours of neighbouring vertices if, at some stage of the
colouring process, a new colour has to be introduced when

15

Research Articles

trying to colour a vertex. Using this idea he constructed
‘a new algorithm called Smallest Last with Interchanges
(SLD).
If G is a partially coloured graph and C; and C;j are
the sets of vertices assigned colours i and j respectively,
called the colour classes of i and j, then let the subgraph
H; ; = (C;UC;). This subgraph need not be connected and
a connected component of H; ; is called an i, j-component.
Since there are no edges between vertices in one such com-
ponent and any other vertices in C; or C; (by definition of a
connected component), colours i and 7 can be interchanged
for all vertices in this component and the resulting assign-
ment would still be a legal colouring. Such an interchange
is called an i, j-interchange on the component. Matula’s
smallest last with interchanges algorithm makes use of this
concept:
1 Order the vertices in smallest last order.
2 Colour the graph with the sequential algorithm, but if
a new colour, ¢, has to be introduced to colour some
vertex v then do the following:

3 Let C! be the set of those colours that were used
to colour exactly one neighbour of vj.

4 Find two distinct colours {, ; € C! and find the
twoneighbours v; and v; of v;. that were coloured
with ¢ and j respectively, such that v; and v; are
in different i, j-components.

5 If such an ¢ and j were found, perform an i, j-
interchange on the component containing v;. This
will free colour i so that it could be used to colour
V.

6 If such an (i, j)-pair was not found, colour v; with
colour c.

The above algorithm can be adapted and the interchange
technique can be used with any of the previous colour-
ing algorithms, including Dsatur. This is done by using
the above algorithm whenever a new colour has to be in-
troduced to colour a vertex. If an i, j-interchange is found
then a new colour would not have to be introduced to colour
the vertex.

To investigate the effect of attempting more inter-
changes, we have extended this algorithm somewhat by
slightly changing step 4. When searching for two colours i
and j with which to perform an 4, j-interchange, instead of
restricting both ¢ and j to come from C", consider all 1, j
pairs where i € C! and j is from the set of all colours used
so far. A successful i, j-interchange will still free colour
i so that it can be used to colour v;. By increasing the
number of colours from which j is chosen, the chance of
finding an interchange that will avoid introducing a new
colour is increased, but the complexity of the algorithm
also increases. As with the interchange technique, this
interchange2 technique can be combined with any of the
previous algorithms.

Dunstan’s algorithm
The following variation of the largest first algorithm was
suggested by Dunstan, see [1]:

16

1 'Order the vertices in a largest first order.
2 Setc=1.
3 Visit the vertices in the order they appear in the vertex
ordering. If a vertex has no neighbours that has been
~ coloured with c, then colour it with colour c.
4 Order the uncoloured vertices in non-increasing order -
of degrees in the uncoloured subgraph.
5 If all the vertices are coloured, stop. Otherwise set
¢=c+ 1and gotostep 3.
If the vertices are not reordered in step 4 of the above
algorithm, then this would be equivalent to the largest first
colouring algorithm. This algorithm differs from largest
first in that the vertex ordering is not fixed before colouring
begins, but is determined as the vertices are being coloured.

COSINE algorithm '

The COSINE algorithm was developed by Hertz [8] and
it produces optimal colourings, in polynomial time, for a
class of graphs known as perfect graphs. A perfect graph
is a graph with its chromatic number equal to the order of
its largest clique. COSINE can also be used to construct

- good, but non-optimal, colourings for general graphs.

The algorithm below makes use of the contraction op-
eration. The contraction of two non-adjacent vertices u.
and v in a graph G is obtained by deleting u and v from G
and replacing it by a single vertex (uv) that is adjacent to
all neighbours of u and to all neighbours of v.

1SetGo=Gandk=0.
2 Let (zy)o be any vertex in graph.
3 While G} is not a clique do ,
4 If there is a vertex not adjacent to (zy),, then set
z; = (zy):. Else choose for z; any vertex not
adjacent to all other vertices in G
5 Choose for y; any vertex not adjacent to z; for
which the number of common neighbours of y;
and z; is a maximum.
6 Form G4 by contracting z;. and y; intoa vertex
(zY)e+1.
7 Setk=k+1.
8 Colour G} (a clique) by assigning a different colour to
each vertex.
9 Colour G by assigning to each vertex v the same colour
as the vertex in G into which v has been contracted.

Recursive Largest First algorithm
Leighton [12] designed an graph coloring algorithm that
is especially efficient, in terms of time required, for large
graphs with low densities - the type of graphs usually en-
countered in practical scheduling problems. Leighton’s
largest first algorithm also produces good colourings for
graphs of all densities.
1 Setk=1.
2 While there are uncoloured vertices in G do:
3 Let V’ be the set of uncoloured vertices in G.
4 SetC=U = ¢.
5 Choose a vertex vo € V' that has the maximum
number of neighbours in V',

SACJ/SART, No 14, 1995

Table 1. Average number of colours used by each algorithm
on graphs with density 25

Order | 125 [250 | 500 |
Algorithm Colors used.

SEQ 144 | 228 | 386
SEQI 134 | 21.5 | 360
SEQI2 125 1 206 | 353

LF 134 | 215 | 36.3
LFI 126 | 206 | 35.1
LFI2 119 | 194 | 333
DLF 126 | 21.0 | 348
DLFI 12.1 | 202 | 342

DLFI2 120 | 194 | 335
LFTB 1371216 | 362
LFTBI 122 | 205 | 350
LFTBI2 118 | 196 | 334

DUN 124 | 202 | 338
SL 138 | 218 | 372
SLI 125 | 206 | 353
SLR 118 | 196 | 332
DS 1121 1 193 | 329
DSI 11.8 | 199 | 33.7
DSI2 115 | 190 | 332
Cos 115 | 186 | 310
RLF 112 | 183 | 30.3
BEST 11.1 | 183 | 30.3

6 Move vo from V' to C.
7 Move all neighboursof vo in V' o U.
8 While V' # ¢ do:

9 Choose a vertex v € V' that has a maxi-
mum number of neighbours in U. Ties are
broken, if possible, by selecting a v with the
minimum number of neighbours in V',

10 Move v from V/ 10 C.
11 Move all neighboursof v in V' to U.

12 Colour all vertices in C with oolour k and set
k=k+1. :

Experimental results
The algorithms described above were compared in terms
of time and number of colours used to colour a number
of random graphs. Graphs were generated with densities,
0.25, 0.5 and 0.75 and orders, 125, 250 and 500. For
each order-density pair 10 graphs were generated and the
average number of colours and time used by each of the
algorithms tested to colour these graphs were recorded. In
addition 2 graphs of order 1000 and density 0.5 were also
used. The results are indicated in Tables 1-6. We have used
the the common method of generating a random test graph
with density around the desired density d[8, 10, 15): For
each possible edge in the graph a pseudo-random numbes r
is selected from the interval (0, 1] with uniform distribution.
If r < d then that edge is included in the random graph.
Thealgorithmsappeanng in Tables 1-6areabbrevmted
as follows:

SACJ/SART, No 14, 1995

“Research Articles

Table 2. Average number of colours used by each algorithm
on graphs with density .§

Order | 125 | 250 | 500 | 1000
Colors used.

SEQ = |244 4207251250
SEQI 228|402 | 694 | 1230
SEQI2. |222 380663 | 1175

LF 23.7] 39.7 | 69.1 | 1225
LFl 223) 383 | 67.6 | 120.5
LFI2]212] 367|649 | 1155
DLF 2271390 | 678 | 1200

DLFI | 218379662 | 1190
DLFI2 210 | 366 | 63.7 | 1140
LFTB 2341400 | 696 | 1225
LFTBI | 219] 385|673 | 1210
LFTBI2 | 209 | 363 | 64.2 | 1150
DUN 222|378 | 664 | 1175

SL 1238409 | 699 | 1235
SLI 218 | 385 | 67.7 | 121.5
SLI2 209 | 363 | 644 | 1140
DS - 121.8]370| 658 | 1150
DSI 213 {374 | 669 | 1185
DSI2 20.7 | 36.5 | 64.5 | 116.0
Cos 20.8 | 354 | 61.0 | 1100
RLF 202 | 343 | 60.3 | 107.5

BEST 200 { 343 | 60.2 | 107.5

Table 3. Average number of colours used by each algorithm
on graphs with density .75

Order | 125 | 250 | 500
Algorithm Colors used.

SEQ 39.7 | 700 | 121.7
SEQI 36.7 | 64.2 | 1155
SEQI2 349 | 62.3 | 1100
LF . 382|656 | 1178
LFI = | 359|630 1133

LFI2 340 | 604 | 1079
DLF 372 | 654 | 1152

DLFI 357 | 626 | 1114
DLFI2 342 | 598 | 1076
LFTB 38.1 1662 | 1177
LFTBI 354 | 628 | 1132
LFTBI2 {339 | 60.1 | 108.0
DUN 364 | 63.3 | 1134

SL 382 | 67.1 | 1193
SLI 359 | 63.1 [1138
SLI2 34.1 | 599 | 1088
DS 347 | 622 | 1115
DSI 347 | 624 | 1135
DS2 345 | 599 | 109.6
Cos 349 | 50.6 | 1060
RLF 33.1 | 584 | 104.1

BEST 328 | 58.2 | 104.1

17

Research Articles

Table 4. Average time used (In seconds) by each algorithm on

graphs with density 25
Order | 125 | 250 500

Algorithm Time used.

SEQ 011] 026 1.12
SEQI 043 | 231 | 1403
SEQI2 1.64 | 1355 | 117.13
LF 009]| 032 1.4
LFI 048 | 249 | 1465
LFI2 201 | 1697 | 14442
DLF 021 080 3.33

DLFI 046 | 238 | 1123
DLFI2 1.76 | 13.33 | 106.40
LFTB 0.15 | 058 2.26
058 276 | 1383

LFTBI
LFTBI2 | 247 | 1792 | 14536
DUN |040| 207 | 1245
SL 020 | 080 331
SLI 070 | 390| 2024
sz | 266 2130 | 17521
DS 147 [802 | 5141
DSI 323 | 2785 | 27179
DSR2 | 607 | 6342 | 648.64
cos | 6513494 | 22069
| RLF 645 | 34.68 | 200.47

Table 5. Average time used (in seconds) by each algorithm on

graphs with density .§
Order | 125 250 500 1000

Algorithm Time used.

SEQ 0.12 053 222 9.10
SEQI 1.12 6.83 39.22 23946
SEQI2 646 | 5457 | 442119 | 4144.65
LF 0.17 0.58 2.38 942
LFI 1.44 7.35 39.90 265.27
LFI2 855 | 6863 | 563.57 | 454141
DLF 0.33 1.30 5.59 23.23
DLFI 1.22 6.43 35.88 200.01
DLFI2 608 | 5393 | 45625 | 3845.99
LFTB 0.27 1.04 443 17.88
LFTBI 1.63 1.75 43.71 266.00
LFTBI2 834 | 69.27 | 594.02 | 499740
DUN 0.92 5.32 3345 230.36
SL 033 1.30 5.54 2299
SLI 199 | 10.05 53.18 305.06
SLI2 1051 | 77.15 | 626.12 | 519148
DS 366 | 2397} 176.66 | 1313.54
DSI 11.53 | 109.76 | 1042.34 | 10679.52
DSI2 24.89 | 221.61 | 2105.17 | 19339.29
COoSs 8.57 | 5038 | 33735 2364.18
RLF 801 | 4638 | 328.88 | 2237.11

18

Table 6. Average time used (in seconds) by each algorithm on
graphs with density .75

Order | 125 250 | 500

Algorithm Time used.
SEQ 0.20 0.79 3.36
SEQI 306 | 1624 98.17
SEQI2 18,77 | 157.14 | 1274.72
LF 0.23 0.85 351
LFI 375 | 1863 | 106.99
LFI2 24.65 | 19645 | 1619.22
DLF 046 1.84 7.83
DLFI 273 | 1444 79.79
DLFI2 19.57 | 148.70 | 1332.99
LFTB 0.40 1.58 6.61 f
LFTBI 399 | 2037 107.22
LFTBI2 2536 | 189.58 | 1617.27
DUN 187 | 1138 7491
SL 047 1.82 7.76
‘SLI 575 2742} 142.68
SLI2 3238 | 22248 | 1789.94
DS 756 | 53.74 | 411.86
DSI 26.85 | 244.50 | 2494.09
DSI2 62.98 | 56491 | 5283.24
Cos 9.16 | 58.75| 390.72
RLF 852 | 5234 | 364.73

SEQ - sequential colour,

LF — largest first,

DLF - dynamic largest first,

LFTB - largest first with tiebreaking,

SL — smallest last,

DS — Dsatur,

DUN - Dunstan’s algorithm,

COS - COSINE and

RLF - recursive largest first.

Appending an I or 12 to some of the above abbreviations
indicates that the interchange or interchange2 technique
was used with the algorithm. BEST shows the average
number of colours used in the best colouring found for
each graph by any of the algorithms tested.

From these tables we can see that RLF produces the
best colourings with COS producing only slightly worse
colourings, even though it is slower. RLF, in addition to
producing the best colourings on average, almost always
produced the best colouring for each graph. This is illus-
trated by the small differences between the average colours
used by RLF and BEST, especially for the larger graphs.
The sequential colouring algorithms use the most colours
on average, but these algorithms are very fast compared
to the others. The benefits of ordering the vertices ac-
cording to some heuristic before applying SEQ can also be
seen clearly; all these algorithms produced better colour-
ings than SEQ, on average. The interchange algorithms
produce colourings better than the corresponding sequen-
tial algorithms. The exception to this is the DS algorithm
that often out performs DSI and DSI2 on the larger graphs.

. The interchange? algorithms are computationally very ex-

SACJ/SART, No 14, 1995

pensive with running times larger than that of the RLF
and COS algorithms while producing inferior colourings.
This shows that there are more efficient ways to find im-
proved colourings than to resort to extensive, uncontrolled,
interchanging of colours. DUN also produces fairly good
colourings quickly - much faster than the 12 algorithms and
RLF but uses slightly more colours.

Conclusions v

Selecting a best algorithm depends on the specific applica-
tion itis to be used for. Usually we want the best colourings
possible, provided that we can find it in a reasonable time.
RLF produces the best colourings, but for very large graphs
it might be too slow and a faster algorithm might be needed.
If speed is an issue than LF is a good algorithm to use. On
average it uses only slightly more time than the fast SEQ
but uses fewer colours. The two algorithms RLF and LF
would appear to be the best 2 from those tested. LF would
be preferable for for large graphs and in casses where tim-
ing is critical while RLF would be better for application
where good colourings are of more importance than fast
running times.

Recently it has becn shown that general search heuris-
tics like simulated annealing [10] and tabu search [9] per-
form very well when applied to the graph colouring prob-
lem. Both these techniques start with some initial colouring
and then proceed to modify that colouring in an attempt to
reduce the number of colours used. Hertz [8], for exam-
ple shows that applying tabu search to an initial colour-
ing generated by the COSINE algorithm usually results
in a significant decrease in colours used to colour large
graphs. Even though both these techniques can be started
from an arbitrary initial colouring, they produce much bet-
ter colourings when started from a good initial colouring.
These general search -heuristics are very time consuming
compared to the heuristic algorithms described here. Sim-
ulated annealing is in the order of 100 times slower than
the algorithms described here on graphs of order 1000 and
density 0.5[10]. They are useful when trying to improve
on colourings found by other, faster, algorithms given suffi-
cient time. Even though tabu search and simulated anneal-
ing is not discussed in any detail in this paper, the results
given here are also useful for deciding on an algorithm with
a suitable trade off between time used and quality of colour-
ings produced to be used to create an initial colouring for
one of these general search heuristics. For such algorithms,
according to the results in this paper, the best algorithms to
- consider for generating an initial colouring would be LF or
RLE

References

1. D Brelaz, ‘New methods to color the vertices of a
graph’. Comm. ACM, 22:251-256, (1979).

2. JR Brown. ‘Chromatic scheduling and the chromatic
number problems’. Management Science, 19:456-
463, (1972).

SACJ/SART, No 14, 1995

10.

11.

12.

13.

14.

15.

16.

Research Articles .

N Christofides. ‘An algorithm for the chromatic num-
ber of a graph’. Comput. J., 14:38-39, (1971).

N Christofides. Graph Theory, An Algorithmic ap-
proach. Academic Press, London, 1975.

M R Garey and D S Johnson. “The complexity of near
optimal graph coloring’. J.. ACM, 23:43-49, (1976).
M R Garey and D S Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, San
Francisco, 1979.

M M Halld6rsson. ‘A still better guarantee for ap-
proximate graph coloring’. Information Processing
Letters, 45:19-23, (1993). -

A Hertz. ‘COSINE: A new graph coloring algorithm’.
Operations Research Letters, 10:345-351, (1991).

A Hertz and D de Werra. ‘Using tabu search tech-
niques for graph coloring’. Computing, 39:345-351,
(1987). .

D S Johnson, C R Aragon, L A McGeoch, and
C Schevon. ‘Optimization by simulated annealing:
An experimental evaluation; part II, graph color-
ing and number partitioning’. Operations Research,
39:378-406, (1991). A

M Kubale and B Jackowski. ‘A generalized implicit
enumeration algorithm for graph coloring’. Comm.
ACM, 28:412-418, (1985). ,

F T Leighton. ‘A graph coloring algorithm for large
scale scheduling problems’. Journal of Research of the
National Bureau of Standards, 85:489-506, (1979).
D W Matula. Graph Coloring Algorithms. Academic
Press, New York, 1972.

J Peemoller. ‘A correction to Brelaz's modification of
Brown’s coloring algorithm’. Comm. ACM, 26:595-
597, (1983).

J Peemoller. ‘Numerical experiences with graph col-
oring algorithms’. European Journal of Operations
Research, 24:146-151, (1986).

D J A Welsh and M B Powel. ‘An upper bound to
the chromatic number of a graph and its application to
time-table problems’. Comput. J., 10:85-86, (1967).

Received: 1293, Accepted: 2/94, Final copy: 12/94.

19

